Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
PYRIDINE
ID: ALA266158
Max Phase: Preclinical
Molecular Formula: C5H5N
Molecular Weight: 79.10
Molecule Type: Small molecule
Associated Items:
ID: ALA266158
Max Phase: Preclinical
Molecular Formula: C5H5N
Molecular Weight: 79.10
Molecule Type: Small molecule
Associated Items:
Synonyms (1): Pyridine
Synonyms from Alternative Forms(1):
Canonical SMILES: c1ccncc1
Standard InChI: InChI=1S/C5H5N/c1-2-4-6-5-3-1/h1-5H
Standard InChI Key: JUJWROOIHBZHMG-UHFFFAOYSA-N
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Activity Type | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
Natural Product: Yes | Oral: No | Chemical Probe: No | Parenteral: No |
Molecule Type: Small molecule | Topical: No | First In Class: No | Black Box: No |
Chirality: No | Availability: No | Prodrug: No |
MESH ID | MESH Heading | EFO IDs | EFO Terms | Max Phase for Indication | References |
---|
Mechanism of Action | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | References |
---|
Molecular Weight: 79.10 | Molecular Weight (Monoisotopic): 79.0422 | AlogP: 1.08 | #Rotatable Bonds: 0 |
Polar Surface Area: 12.89 | Molecular Species: NEUTRAL | HBA: 1 | HBD: 0 |
#RO5 Violations: 0 | HBA (Lipinski): 1 | HBD (Lipinski): 0 | #RO5 Violations (Lipinski): 0 |
CX Acidic pKa: | CX Basic pKa: 5.12 | CX LogP: 0.76 | CX LogD: 0.75 |
Aromatic Rings: 1 | Heavy Atoms: 6 | QED Weighted: 0.45 | Np Likeness Score: -1.14 |
1. Dunn WJ, Koehler MG, Grigoras S.. (1987) The role of solvent-accessible surface area in determining partition coefficients., 30 (7): [PMID:3599019] [10.1021/jm00390a002] |
2. Tanouchi T, Kawamura M, Ohyama I, Kajiwara I, Iguchi Y, Okada T, Miyamoto T, Taniguchi K, Hayashi M, Iizuka K, Nakazawa M.. (1981) Highly selective inhibitors of thromboxane synthetase. 2. Pyridine derivatives., 24 (10): [PMID:7199089] [10.1021/jm00142a006] |
3. Jorgensen WL, Duffy EM.. (2000) Prediction of drug solubility from Monte Carlo simulations., 10 (11): [PMID:10866370] [10.1016/s0960-894x(00)00172-4] |
4. Sloan JW, Martin WR, Hook R, Hernandez J.. (1985) Structure-activity relationships of some pyridine, piperidine, and pyrrolidine analogues for enhancing and inhibiting the binding of (+/-)-[3H]nicotine to the rat brain P2 preparation., 28 (9): [PMID:4032427] [10.1021/jm00147a021] |
5. Masamune H, Eggler JF, Marfat A, Melvin LS, Rusek FW, Tickner JE, Cheng JB, Shirley JT. (1995) LTD4 Receptor binding activity of novel pyridine chromanols: qualitative correlation with pKa, 5 (13): [10.1016/0960-894X(95)00226-J] |
6. Wilson LY, Famini GR.. (1991) Using theoretical descriptors in quantitative structure-activity relationships: some toxicological indices., 34 (5): [PMID:2033592] [10.1021/jm00109a021] |
7. Ghose AK, Crippen GM.. (1985) Use of physicochemical parameters in distance geometry and related three-dimensional quantitative structure-activity relationships: a demonstration using Escherichia coli dihydrofolate reductase inhibitors., 28 (3): [PMID:3882967] [10.1021/jm00381a013] |
8. Pagliara A, Testa B, Carrupt PA, Jolliet P, Morin C, Morin D, Urien S, Tillement JP, Rihoux JP.. (1998) Molecular properties and pharmacokinetic behavior of cetirizine, a zwitterionic H1-receptor antagonist., 41 (6): [PMID:9526560] [10.1021/jm9704311] |
9. Caron G, Ermondi G.. (2005) Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk)., 48 (9): [PMID:15857133] [10.1021/jm048980b] |
10. Ottaviani G, Martel S, Carrupt PA.. (2007) In silico and in vitro filters for the fast estimation of skin permeation and distribution of new chemical entities., 50 (4): [PMID:17300161] [10.1021/jm0611105] |
11. O'Neill PM, Park BK, Shone AE, Maggs JL, Roberts P, Stocks PA, Biagini GA, Bray PG, Gibbons P, Berry N, Winstanley PA, Mukhtar A, Bonar-Law R, Hindley S, Bambal RB, Davis CB, Bates M, Hart TK, Gresham SL, Lawrence RM, Brigandi RA, Gomez-delas-Heras FM, Gargallo DV, Ward SA.. (2009) Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century., 52 (5): [PMID:19222165] [10.1021/jm8012618] |
12. Hagmann WK.. (2008) The many roles for fluorine in medicinal chemistry., 51 (15): [PMID:18570365] [10.1021/jm800219f] |
13. Toulmin A, Wood JM, Kenny PW.. (2008) Toward prediction of alkane/water partition coefficients., 51 (13): [PMID:18558667] [10.1021/jm701549s] |
14. O'Neill PM, Shone AE, Stanford D, Nixon G, Asadollahy E, Park BK, Maggs JL, Roberts P, Stocks PA, Biagini G, Bray PG, Davies J, Berry N, Hall C, Rimmer K, Winstanley PA, Hindley S, Bambal RB, Davis CB, Bates M, Gresham SL, Brigandi RA, Gomez-de-Las-Heras FM, Gargallo DV, Parapini S, Vivas L, Lander H, Taramelli D, Ward SA.. (2009) Synthesis, antimalarial activity, and preclinical pharmacology of a novel series of 4'-fluoro and 4'-chloro analogues of amodiaquine. Identification of a suitable "back-up" compound for N-tert-butyl isoquine., 52 (7): [PMID:19284751] [10.1021/jm8012757] |
15. PubChem BioAssay data set, |
16. Mavel S, Mincheva Z, Méheux N, Carcenac Y, Guilloteau D, Abarbri M, Emond P.. (2012) QSAR study and synthesis of new phenyltropanes as ligands of the dopamine transporter (DAT)., 20 (4): [PMID:22300887] [10.1016/j.bmc.2012.01.014] |
17. Röhrig UF, Majjigapu SR, Grosdidier A, Bron S, Stroobant V, Pilotte L, Colau D, Vogel P, Van den Eynde BJ, Zoete V, Michielin O.. (2012) Rational design of 4-aryl-1,2,3-triazoles for indoleamine 2,3-dioxygenase 1 inhibition., 55 (11): [PMID:22616902] [10.1021/jm300260v] |
18. St Jean DJ, Fotsch C.. (2012) Mitigating heterocycle metabolism in drug discovery., 55 (13): [PMID:22533875] [10.1021/jm300343m] |
19. Merski M, Shoichet BK.. (2013) The impact of introducing a histidine into an apolar cavity site on docking and ligand recognition., 56 (7): [PMID:23473072] [10.1021/jm301823g] |
20. PubChem BioAssay data set, |
21. Seydel JK, Schaper KJ, Wempe E, Cordes HP.. (1976) Mode of action and quantitative structure-activity correlations of tuberculostatic drugs of the isonicotinic acid hydrazide type., 19 (4): [PMID:817022] [10.1021/jm00226a007] |
22. Mirrlees MS, Moulton SJ, Murphy CT, Taylor PJ.. (1976) Direct measurement of octanol-water partition coefficients by high-pressure liquid chromatography., 19 (5): [PMID:1271403] [10.1021/jm00227a008] |
23. Cates LA, Good DJ, Jones GS, Lemke TL.. (1978) Phosphorus-nitrogen compounds. 22. Synthesis and antitumor activity of arylsulfonylhydrazone analogues., 21 (11): [PMID:722720] [10.1021/jm00209a011] |
24. Kaur P, Chamberlin AR, Poulos TL, Sevrioukova IF.. (2016) Structure-Based Inhibitor Design for Evaluation of a CYP3A4 Pharmacophore Model., 59 (9): [PMID:26371436] [10.1021/acs.jmedchem.5b01146] |
25. Gu C, Lamb ML, Johannes JW, Sylvester MA, Eisman MS, Harrison RA, Hu H, Kazmirski S, Mikule K, Peng B, Su N, Wang W, Ye Q, Zheng X, Lyne PD, Scott DA.. (2016) Modulating the strength of hydrogen bond acceptors to achieve low Caco2 efflux for oral bioavailability of PARP inhibitors blocking centrosome clustering., 26 (19): [PMID:27578247] [10.1016/j.bmcl.2016.08.030] |
26. DrugMatrix, [10.6019/CHEMBL3885881] |
27. Pennington LD, Moustakas DT.. (2017) The Necessary Nitrogen Atom: A Versatile High-Impact Design Element for Multiparameter Optimization., 60 (9): [PMID:28177632] [10.1021/acs.jmedchem.6b01807] |
28. Leung E, Pilkington LI, Naiya MM, Barker D, Zafar A, Eurtivong C, Reynisson J.. (2019) The cytotoxic potential of cationic triangulenes against tumour cells., 10 (11): [PMID:32952994] [10.1039/C9MD00305C] |
29. (2017) Sensitization of cancer cells to nampt inhibitors by nicotinic acid phosphoribosyltransferase neutralization, |
Source(4):