ID: ALA3351143

Max Phase: Preclinical

Molecular Formula: C8H15NO6

Molecular Weight: 221.21

Molecule Type: Small molecule

Associated Items:

Representations

Canonical SMILES:  CC(=O)N[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O

Standard InChI:  InChI=1S/C8H15NO6/c1-3(11)9-8-7(14)6(13)5(12)4(2-10)15-8/h4-8,10,12-14H,2H2,1H3,(H,9,11)/t4-,5-,6+,7-,8+/m1/s1

Standard InChI Key:  IBONACLSSOLHFU-CBQIKETKSA-N

Associated Targets(Human)

Brain glycogen phosphorylase 474 Activities

Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Muscle glycogen phosphorylase 197 Activities

Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Associated Targets(non-human)

Glycogen phosphorylase, muscle form 1331 Activities

Activity TypeRelationActivity valueUnitsAction TypeJournalPubMed IddoiAssay Aladdin ID

Molecule Features

Natural Product: NoOral: NoChemical Probe: NoParenteral: No
Molecule Type: Small moleculeTopical: NoFirst In Class: NoBlack Box: No
Chirality: NoAvailability: NoProdrug: No

Drug Indications

MESH IDMESH Heading EFO IDsEFO TermsMax Phase for IndicationReferences

Mechanisms of Action

Mechanism of ActionAction Typetarget IDTarget NameTarget TypeTarget OrganismBinding Site NameReferences

Properties

Molecular Weight: 221.21Molecular Weight (Monoisotopic): 221.0899AlogP: -3.08#Rotatable Bonds: 2
Polar Surface Area: 119.25Molecular Species: NEUTRALHBA: 6HBD: 5
#RO5 Violations: 0HBA (Lipinski): 7HBD (Lipinski): 5#RO5 Violations (Lipinski): 0
CX Acidic pKa: 11.47CX Basic pKa: CX LogP: -3.22CX LogD: -3.22
Aromatic Rings: 0Heavy Atoms: 15QED Weighted: 0.34Np Likeness Score: 1.61

References

1. Pastor M, Cruciani G, Clementi S..  (1997)  Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships.,  40  (10): [PMID:9154968] [10.1021/jm9608016]
2. Venkatarangan P, Hopfinger AJ..  (1999)  Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase.,  42  (12): [PMID:10377222] [10.1021/jm980515p]
3. Somsák L, Kovács L, Tóth M, Osz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P..  (2001)  Synthesis of and a comparative study on the inhibition of muscle and liver glycogen phosphorylases by epimeric pairs of d-gluco- and d-xylopyranosylidene-spiro-(thio)hydantoins and N-(d-glucopyranosyl) amides.,  44  (17): [PMID:11495595] [10.1021/jm010892t]
4. Pan D, Liu J, Senese C, Hopfinger AJ, Tseng Y..  (2004)  Characterization of a ligand-receptor binding event using receptor-dependent four-dimensional quantitative structure-activity relationship analysis.,  47  (12): [PMID:15163189] [10.1021/jm030586a]
5. Zamora I, Oprea T, Cruciani G, Pastor M, Ungell AL..  (2003)  Surface descriptors for protein-ligand affinity prediction.,  46  (1): [PMID:12502357] [10.1021/jm011051p]
6. Pastor M, Cruciani G, Watson KA..  (1997)  A strategy for the incorporation of water molecules present in a ligand binding site into a three-dimensional quantitative structure--activity relationship analysis.,  40  (25): [PMID:9406599] [10.1021/jm970273d]
7. Gohlke H, Klebe G..  (2002)  DrugScore meets CoMFA: adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein.,  45  (19): [PMID:12213058] [10.1021/jm020808p]
8. So SS, Karplus M..  (1997)  Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 2. Applications.,  40  (26): [PMID:9435905] [10.1021/jm970488n]
9. Somsák L, Nagy V, Vidal S, Czifrák K, Berzsényi E, Praly JP..  (2008)  Novel design principle validated: glucopyranosylidene-spiro-oxathiazole as new nanomolar inhibitor of glycogen phosphorylase, potential antidiabetic agent.,  18  (20): [PMID:18793852] [10.1016/j.bmcl.2008.08.052]
10. Tóth M, Kun S, Bokor E, Benltifa M, Tallec G, Vidal S, Docsa T, Gergely P, Somsák L, Praly JP..  (2009)  Synthesis and structure-activity relationships of C-glycosylated oxadiazoles as inhibitors of glycogen phosphorylase.,  17  (13): [PMID:19450985] [10.1016/j.bmc.2009.04.036]
11. Bokor E, Docsa T, Gergely P, Somsák L..  (2010)  Synthesis of 1-(D-glucopyranosyl)-1,2,3-triazoles and their evaluation as glycogen phosphorylase inhibitors.,  18  (3): [PMID:20080412] [10.1016/j.bmc.2009.12.043]
12. Tsirkone VG, Tsoukala E, Lamprakis C, Manta S, Hayes JM, Skamnaki VT, Drakou C, Zographos SE, Komiotis D, Leonidas DD..  (2010)  1-(3-Deoxy-3-fluoro-beta-d-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: Kinetic, crystallographic and modelling studies.,  18  (10): [PMID:20430629] [10.1016/j.bmc.2010.04.004]
13. Nagy V, Felföldi N, Kónya B, Praly JP, Docsa T, Gergely P, Chrysina ED, Tiraidis C, Kosmopoulou MN, Alexacou KM, Konstantakaki M, Leonidas DD, Zographos SE, Oikonomakos NG, Kozmon S, Tvaroška I, Somsák L..  (2012)  N-(4-Substituted-benzoyl)-N'-(β-d-glucopyranosyl)ureas as inhibitors of glycogen phosphorylase: Synthesis and evaluation by kinetic, crystallographic, and molecular modelling methods.,  20  (5): [PMID:22325154] [10.1016/j.bmc.2011.12.059]
14. Bokor E, Docsa T, Gergely P, Somsák L..  (2013)  C-Glucopyranosyl-1,2,4-triazoles As New Potent Inhibitors of Glycogen Phosphorylase.,  (7): [PMID:24900719] [10.1021/ml4001529]
15. Uddin R, Saeed M, Ul-Haq Z.  (2013)  Molecular docking- and genetic algorithm-based approaches to produce robust 3D-QSAR models,  [10.1007/s00044-013-0812-0]
16. Kun S, Bokor É, Varga G, Szőcs B, Páhi A, Czifrák K, Tóth M, Juhász L, Docsa T, Gergely P, Somsák L..  (2014)  New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase.,  76  [PMID:24608000] [10.1016/j.ejmech.2014.02.041]

Source