Document Report Card
Basic Information
ID: ALA1123079
Journal: J Med Chem
Title: Synthesis and biological activity of a novel adenosine analogue, 3-beta-D-ribofuranosylthieno[2,3-d]pyrimidin-4-one.
Authors: Patil VD, Wise DS, Wotring LL, Bloomer LC, Townsend LB.
Abstract: The title nucleoside 5 was prepared by a condensation of the silylated heterocycle thieno[2,3-d]pyrimidin-4-one (1) with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-ribofuranose (2a) in the presence of a Lewis acid or with 2,3,5-tri-O-acetyl-D-ribofuranosyl bromide (2b) in the presence of mercuric oxide and mercuric bromide. The site of ribosylation and anomeric configuration of this nucleoside were established by 1H NMR. The synthesis of 3-beta-D-ribofuranosylpyrrolo[2,3-d]pyrimidin-4-one (8), 1-phenyl-5-beta-D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4-one (9), 5-methyl-3-beta-D-ribofuranosylthieno[2,3-d]pyrimidin-4-one (10), and 2-methyl-6-beta-D-ribofuranosyltriazolo[5,4-d]pyrimidin-7-one (11) is also described. The title compound inhibited the growth of murine L-1210 leukemic cells in vitro with an ID50 of 3 X 10(-5)M. The growth inhibition could not be prevented by uridine, cytidine, thymidine, deoxycytidine, cytosine, hypoxanthine, or uridine and hypoxanthine together. On the other hand, inhibition of adenosine kinase by 10(-7) M 5-iodotubercidin prevented the cytotoxic effect. Also a subline of L-1210 cells resistant to several cytotoxic adenosine analogues was also resistant to this nucleoside. Thus it appears that this compound 5 may act as an adenosine analogue.
CiteXplore: 3981534
DOI: 10.1021/jm00382a006