Document Report Card

Basic Information

ID: ALA1125409

Journal: J Med Chem

Title: Synthesis and biological activity of acyclic analogues of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid.

Authors: Shih C, Gossett LS, Worzalla JF, Rinzel SM, Grindey GB, Harrington PM, Taylor EC.

Abstract: The synthesis and biological evaluation of a number of analogues of N-[4-[4-(2,4-diamino-1,6-dihydro-6-oxo-5-pyrimidyl) butyl]benzoyl]-L-glutamic acid (2) (7-DM-DDATHF), an acyclic modification of the novel folate antimetabolite 5,10-dideazatetrahydrofolic acid (DDATHF), are described. The synthetic procedure utilized previously for the synthesis of 2, 15, and 16 was extended to the preparation of analogues modified in the benzoyl region with thiophene and methylene groups replacing the benzene ring (compounds 27a-c) and in the glutamate region with aspartic acid and phenylalanine replacing L-glutamic acid (compounds 36, 37). The 2-amino-4,6-dioxo derivative 33 was obtained from intermediate 30 via a palladium-catalyzed carbon-carbon coupling reaction with diethyl (4-iodobenzoyl)-L-glutamate, followed by reduction and removal of protecting groups with base. Cell culture cytotoxicity studies of all of the above acyclic analogues of DDATHF against CCRF-CEM human lymphoblastic leukemic cells gave IC50s ranging from 0.042 greater than 48 microM. Inhibition and cell culture reversal studies against isolated enzymes suggest the mode of action of these compounds. Compound 2 was only 3-fold less inhibitory toward glycinamide ribonucleotide formyltransferase (GARFT, isolated from L1210 leukemic cells) than DDATHF itself. These acyclic analogues were less efficient substrates for the enzyme folylpolyglutamate synthetase (FPGS) compared with their bicyclic counterparts. Moderate antitumor activity was observed for compound 2 against 6C3HED lymphosarcoma and C3H mammary adenocarcinoma in vivo.

CiteXplore: 1552503

DOI: 10.1021/jm00084a016