Document Report Card
Basic Information
ID: ALA1133088
Journal: J Med Chem
Title: The novel silatecan 7-tert-butyldimethylsilyl-10-hydroxycamptothecin displays high lipophilicity, improved human blood stability, and potent anticancer activity.
Authors: Bom D, Curran DP, Kruszewski S, Zimmer SG, Thompson Strode J, Kohlhagen G, Du W, Chavan AJ, Fraley KA, Bingcang AL, Latus LJ, Pommier Y, Burke TG.
Abstract: We describe the rational design and synthesis of B- and A, B-ring-modified camptothecins. The key alpha-hydroxy-delta-lactone pharmacophore in 7-tert-butyldimethylsilyl-10-hydroxycamptothecin (DB-67, 14) displays superior stability in human blood when compared with clinically relevant camptothecin analogues. In human blood 14 displayed a t(1/2) of 130 min and a percent lactone at equilibrium value of 30%. The tert-butyldimethylsilyl group renders the new agent 25-times more lipophilic than camptothecin, and 14 is readily incorporated, as its active lactone form, into cellular and liposomal bilayers. In addition, the dual 7-alkylsilyl and 10-hydroxy substitution in 14 enhances drug stability in the presence of human serum albumin. Thus, the net lipophilicity and the altered human serum albumin interactions together function to promote the enhanced blood stability. In vitro cytotoxicity assays using multiple different cell lines derived from eight distinct tumor types indicate that 14 is of comparable potency to camptothecin and 10-hydroxycamptothecin, as well as the FDA-approved camptothecin analogues topotecan and CPT-11. In addition, cell-free cleavage assays reveal that 14 is highly active and forms more stable top1 cleavage complexes than camptothecin or SN-38. The impressive blood stability and cytotoxicity profiles for 14 strongly suggest that it is an excellent candidate for additional in vivo pharmacological and efficacy studies.
CiteXplore: 11052802
DOI: 10.1021/jm000144o