Document Report Card
Basic Information
ID: ALA1133455
Journal: J Med Chem
Title: Synthesis of novel 5-substituted 3-amino-3,4-dihydro-2H-1-benzopyran derivatives and their interactions with the 5-HT1A receptor.
Authors: Hammarberg E, Nordvall G, Leideborg R, Nylöf M, Hanson S, Johansson L, Thorberg SO, Tolf BR, Jerning E, Svantesson GT, Mohell N, Ahlgren C, Westlind-Danielsson A, Csöregh I, Johansson R.
Abstract: A series of new enantiomerically pure 3-amino-3,4-dihydro-2H-1-benzopyrans (3-aminochromans) has been synthesized from (R)- and (S)-5-methoxy-3-amino-3,4-dihydro-2H-1-benzopyran. The absolute configuration of the respective (R)- and (S)-enantiomers was deduced from X-ray crystallography of (R)-3-(N-isopropylamino)-5-methoxy-3,4-dihydro-2H-1-benzopyran, (R)-9a. Various 5-substituents were introduced via palladium-catalyzed carbonylation of N-substituted 3-amino-5-trifluoromethanesulfonyloxy-3,4-dihydro-2H-1-benzopyran. The effect of N- and 5-substitution on affinity for the 5-HT1A receptor was evaluated in competition experiments using rat hippocampal membranes and [3H]8-OH-DPAT as radioligand. Selected compounds were also tested for their affinity to the D1 (rat striatum), D2 (rat striatum), D2A (human cloned), and 5-HT2A (rat cortex) receptors. The intrinsic activity of the compounds was evaluated by measuring their effect on VIP-stimulated cAMP production in GH4ZD10 cells stably transfected with the 5-HT1A receptor. High-affinity compounds with high selectivity for the 5-HT1A receptor were found among structures substituted with carboxylate esters, amides, and ketones in the 5-position. Primary and secondary amines bound with lower affinity than tertiary amines. Larger substituents were well-tolerated by the receptor, but the smaller N-ethyl-N-isopropyl bound with lower affinity. Generally, the (R)-enantiomers displayed higher affinity for the 5-HT1A receptor than the corresponding (S)-enantiomers. In the present series of compounds, both full and partial agonists were found.
CiteXplore: 10956192
DOI: 10.1021/jm990956o