Document Report Card
Basic Information
ID: ALA1133684
Journal: J Med Chem
Title: Novel cannabinol probes for CB1 and CB2 cannabinoid receptors.
Authors: Mahadevan A, Siegel C, Martin BR, Abood ME, Beletskaya I, Razdan RK.
Abstract: The observation that the phenolic hydroxyl of THCs was important for binding to the CB1 receptor but not as critical for binding to the CB2 receptor prompted us to extend this finding to the cannabinol (CBN) series. To study the SAR of CBN analogues, CBN derivatives with substitution at the C-1, C-3, and C-9 positions were chosen since these positions have played a key role in the SAR of THCs. CBN-3-(1',1'-dimethylheptyl) analogues were prepared by sulfur dehydrogenation of Delta(8)-THC-3-(1',1'-dimethylheptyl) analogues. 9-Substituted CBN analogues were prepared by the standard sulfur dehydrogenation of 9-substituted Delta(8)-THC analogues (Scheme 1), which in turn were prepared following our previous procedure using selenium dioxide oxidation of the corresponding Delta(8)-THCs followed by sodium chlorite oxidation to give the 9-carboxy-Delta(8)-THC derivatives. 11-Hydroxy-CBN analogues were prepared from the corresponding 9-carbomethoxy-CBN analogues by reduction with LiAlH(4). Deoxy-CBN analogue 14 was prepared from the corresponding Delta(8)-THC analogue 11 by conversion of the phenolic hydroxyl to the phosphate derivative 12, followed by lithium ammonia reduction to provide the deoxy-Delta(8)-THC analogue 13, which in turn was dehydrogenated with sulfur to provide the deoxy-CBN analogue 14 (Scheme 2). The various analogues were assayed for binding both to the brain and the peripheral cannabinoid receptors (CB1 and CB2). We have found that the binding profile differs widely between the CBN and the THC series. Specifically, in the CBN series the removal of the phenolic hydroxyl decreases binding affinity to both the CB1 and CB2 receptors, whereas in the THC series, CB1 affinity is selectively reduced. Thus, in the CBN series, the selectivity of binding observed with the removal of the hydroxy group is decreased severalfold as compared to what occurs in the THC series. Generally, high affinity for the CB2 receptor was found in analogues when the phenolic hydroxyl was present. The 3-(1', 1'-dimethylheptyl) derivatives were found to have much higher affinities than the CBN analogues, which is in complete agreement with previously reported work by Rhee et al.
CiteXplore: 11020293
DOI: 10.1021/jm0001572