Document Report Card

Basic Information

ID: ALA1135802

Journal: J Med Chem

Title: Pyrrolo[1,3]benzothiazepine-based atypical antipsychotic agents. Synthesis, structure-activity relationship, molecular modeling, and biological studies.

Authors: Campiani G, Butini S, Gemma S, Nacci V, Fattorusso C, Catalanotti B, Giorgi G, Cagnotto A, Goegan M, Mennini T, Minetti P, Di Cesare MA, Mastroianni D, Scafetta N, Galletti B, Stasi MA, Castorina M, Pacifici L, Ghirardi O, Tinti O, Carminati P.

Abstract: The prototypical dopamine and serotonin antagonist (+/-)-7-chloro-9-(4-methylpiperazin-1-yl)-9,10-dihydropyrrolo[2,1-b][1,3]benzothiazepine (5) was resolved into its R and S enantiomers via crystallization of the diastereomeric tartaric acid salts. Binding studies confirmed that the (R)-(-)-enantiomer is a more potent D(2) receptor antagonist than the (S)-(+)-enantiomer, with almost identical affinity at the 5-HT(2) receptor ((S)-(+)-5, log Y = 4.7; (R)-(-)-5, log Y = 7.4). These data demonstrated a significant stereoselective interaction of 5 at D(2) receptors. Furthermore, enantiomer (S)-(+)-5 (ST1460) was tested on a panel of receptors; this compound showed an intriguing binding profile characterized by high affinity for H(1) and the alpha(1) receptor, a moderate affinity for alpha(2) and D(3) receptors, and low affinity for muscarinic receptors. Pharmacological and biochemical investigation confirmed an atypical pharmacological profile for (S)-(+)-5. This atypical antipsychotic lead has low propensity to induce catalepsy in rat. It has minimal effect on serum prolactin levels, and it has been selected for further pharmacological studies. (S)-(+)-5 increases the extracellular levels of dopamine in the rat striatum after subcutaneous administration. By use of 5 as the lead compound, a novel series of potential atypical antipsychotics has been developed, some of them being characterized by a stereoselective interaction at D(2) receptors. A number of structure-activity relationships trends have been identified, and a possible explanation is advanced in order to account for the observed stereoselectivity of the enantiomer of (+/-)-5 for D(2) receptors. The molecular structure determination of the enantiomers of 5 by X-ray diffraction and molecular modeling is reported.

CiteXplore: 11784139

DOI: 10.1021/jm010982y