Document Report Card

Basic Information

ID: ALA1137721

Journal: Eur J Med Chem

Title: Modeling the activity of furin inhibitors using artificial neural network.

Authors: Worachartcheewan A, Nantasenamat C, Naenna T, Isarankura-Na-Ayudhya C, Prachayasittikul V.

Abstract: Quantitative structure-activity relationship (QSAR) models were constructed for predicting the inhibition of furin-dependent processing of anthrax protective antigen of substituted guanidinylated aryl 2,5-dideoxystreptamines. Molecular descriptors calculated by E-Dragon and RECON were subjected to variable reduction using the Unsupervised Forward Selection (UFS) algorithm. The variables were then used as input for QSAR model generation using partial least squares and back-propagation neural network. Prediction was performed via a two-step approach: (i) perform classification to determine whether the molecule is active or inactive, (ii) develop a QSAR regression model of active molecules. Both classification and regression models yielded good results with RECON providing higher accuracy than that of E-DRAGON descriptors. The performance of the regression model using E-Dragon and RECON descriptors provided a correlation coefficient of 0.807 and 0.923 and root mean square error of 0.666 and 0.304, respectively. Interestingly, it was observed that appropriate representations of the protonation states of the molecules were crucial for good prediction performance, which coincides with the fact that the inhibitors interact with furin via electrostatic forces. The results provide good prospect of using the proposed QSAR models for the rational design of novel therapeutic furin inhibitors toward anthrax and furin-dependent diseases.

CiteXplore: 18977558

DOI: 10.1016/j.ejmech.2008.09.028