Document Report Card
Basic Information
ID: ALA1138646
Journal: Bioorg Med Chem Lett
Title: Carbonic anhydrase inhibitors: inhibition of the membrane-bound human isozyme IV with anions.
Authors: Innocenti A, Firnges MA, Antel J, Wurl M, Scozzafava A, Supuran CT.
Abstract: The membrane-associated human isozyme of carbonic anhydrase, hCA IV, has been investigated for its interaction with anion inhibitors, for the CO(2) hydration reaction catalyzed by this enzyme. Surprisingly, halides were observed to act as potent hCA IV inhibitors, with inhibition constants in the range of 70-90 microM, although most of these ions, and especially fluoride, the best hCA IV inhibitor among the halides, are weak inhibitors of other isozymes, such as hCA I, II and V. The metal poisons cyanate, cyanide and hydrogen sulfide were weaker hCA IV inhibitors (K(i)'s in the range of 0.6-3.9 mM), whereas thiocyanate, azide, nitrate and nitrite showed even weaker inhibitory properties (K(i)'s in the range of 30.8-65.1 mM). Sulfate was a good hCA IV inhibitor (K(i) of 9 mM), although it is a much weaker inhibitor of isozymes I, II, V and IX. Excellent hCA IV inhibitory properties showed sulfamic acid, sulfamide, phenylboronic acid and phenylarsonic acid, with K(i)'s in the range of 0.87-0.93 microM, whereas their affinities for the other investigated isozymes were in the millimolar range. The interaction of some anions with the mitochondrial isozyme hCA V has also been investigated for the first time here. It has been observed that among all these isozymes, hCA V has the lowest affinity for bicarbonate and carbonate (K(i)'s in the range of 82-95 mM), which may represent an evolutionary adaptation of this isozyme to the rather alkaline environment (pH 8.5) within the mitochondria, where hCA V plays important functions in some biosynthetic reactions involving carboxylating enzymes (pyruvate carboxylase and acetyl coenzyme A carboxylase). There are important differences of affinity for anions between the two membrane-associated isozymes, hCA IV and hCA IX.
CiteXplore: 15501038