Document Report Card
Basic Information
ID: ALA1138677
Journal: J Med Chem
Title: Design, synthesis, and biological evaluation of new cyclic disulfide decapeptides that inhibit the binding of AP-1 to DNA.
Authors: Tsuchida K, Chaki H, Takakura T, Yokotani J, Aikawa Y, Shiozawa S, Gouda H, Hirono S.
Abstract: The transcription factor activator protein-1 (AP-1) is an attractive target for the treatment of immunoinflammatory diseases, such as rheumatoid arthritis. Using the three-dimensional (3D) X-ray crystallographic structure of the DNA-bound basic region leucine zipper (bZIP) domains of AP-1, new cyclic disulfide decapeptides were designed and synthesized that demonstrated AP-1 inhibitory activities. The most potent inhibition was exhibited by Ac-c[Cys-Gly-Gln-Leu-Asp-Leu-Ala-Asp-Gly-Cys]-NH2 (peptide 2) (IC50 = 8 microM), which was largely due to the side chains of residues 3-6 and 8 of the peptide, as shown by an alanine scan. To provide structural information about the biologically active conformation of peptide 2, the structures of peptide 2 derived from molecular dynamics simulation of the bZIP-peptide 2 complex with explicit water molecules were superimposed on the solution structures derived from NMR measurements of peptide 2 in water. These showed a strong structural similarity in the backbones of residues 3-7 and enabled the construction of a 3D pharmacophore model of AP-1 binding compounds, based on the chemical and structural features of the amino acid side chains of residues 3-7 in peptide 2.
CiteXplore: 15293995
DOI: 10.1021/jm049890+