Document Report Card
Basic Information
ID: ALA1139224
Journal: J Med Chem
Title: Discovery and metabolic stabilization of potent and selective 2-amino-N-(adamant-2-yl) acetamide 11beta-hydroxysteroid dehydrogenase type 1 inhibitors.
Authors: Rohde JJ, Pliushchev MA, Sorensen BK, Wodka D, Shuai Q, Wang J, Fung S, Monzon KM, Chiou WJ, Pan L, Deng X, Chovan LE, Ramaiya A, Mullally M, Henry RF, Stolarik DF, Imade HM, Marsh KC, Beno DW, Fey TA, Droz BA, Brune ME, Camp HS, Sham HL, Frevert EU, Jacobson PB, Link JT.
Abstract: Starting from a rapidly metabolized adamantane 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitor 22a, a series of E-5-hydroxy-2-adamantamine inhibitors, exemplified by 22d and (+/-)-22f, was discovered. Many of these compounds are potent inhibitors of 11beta-HSD1 and are selective over 11beta-HSD2 for multiple species (human, mouse, and rat), unlike other reported species-selective series. These compounds have good cellular potency and improved microsomal stability. Pharmacokinetic profiling in rodents indicated moderate to large volumes of distribution, short half-lives, and a pharmacokinetic species difference with the greatest exposure measured in rat with 22d. One hour postdose liver, adipose, and brain tissue 11beta-HSD1 inhibition was confirmed with (+/-)-22f in a murine ex vivo assay. Although 5,7-disubstitued-2-adamantamines provided greater stability, a single, E-5-position, polar functional group afforded inhibitors with the best combination of stability, potency, and selectivity. These results indicate that adamantane metabolic stabilization sufficient to obtain short-acting, potent, and selective 11beta-HSD1 inhibitors has been discovered.
CiteXplore: 17201418
DOI: 10.1021/jm0609364