Document Report Card
Basic Information
ID: ALA1141090
Journal: J Med Chem
Title: Rational design, synthesis, and characterization of novel inhibitors for human beta1,4-galactosyltransferase.
Authors: Takaya K, Nagahori N, Kurogochi M, Furuike T, Miura N, Monde K, Lee YC, Nishimura S.
Abstract: An affinity labeling reagent, uridine 5'-(6-amino-{2-[(7-bromomethyl-2-naphthyl)methoxycarbonylmethoxy]ethoxy}acetyl-6-deoxy-alpha-D-galactopyranosyl) diphosphate (1a), was designed on the basis of 3D docking simulation and synthesized to investigate the functional role of Trp310 residue located in the small loop near the active site of human recombinant galactosyltransferase (betaGalT-1). Mass spectrometric analysis revealed that the Trp310 residue of betaGalT1 can be selectively modified with the naphthylmethyl group of compound 1a at the C-3 position of the indole ring. This result motivated us to synthesize novel uridine-5'-diphosphogalactose (UDP-Gal) analogues as candidates for mechanism-based inhibitors for betaGalT-1. We found that uridine 5'-(6-O-[10-(2-naphthyl)-3,6,9-trioxadecanyl]-alpha-d-galactopyranosyl) diphosphate (2) is the strongest inhibitor (K(i) = 1.86 microM) against UDP-Gal (Km = 4.91 microM) among compounds reported previously. A cold spray ionization time-of-flight mass spectrometry study demonstrated that the complex of this inhibitor and betaGalT-1 cannot interact with an acceptor substrate in the presence of Mn2+.
CiteXplore: 16162007
DOI: 10.1021/jm0504297