Document Report Card

Basic Information

ID: ALA1144680

Journal: J Med Chem

Title: Structure-guided design of aminopyrimidine amides as potent, selective inhibitors of lymphocyte specific kinase: synthesis, structure-activity relationships, and inhibition of in vivo T cell activation.

Authors: DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Chai L, Chaffee SC, Deak HL, Epstein LF, Faust T, Gallant P, Gore A, Gu Y, Henkle B, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor YY, Turci SM, Welcher AA, Zhao H, Zhu L, Zhu X.

Abstract: The lymphocyte-specific kinase (Lck), a member of the Src family of cytoplasmic tyrosine kinases, is expressed in T cells and natural killer (NK) cells. Genetic evidence, including knockout mice and human mutations, demonstrates that Lck kinase activity is critical for normal T cell development, activation, and signaling. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease. With the aid of X-ray structure-based analysis, aminopyrimidine amides 2 and 3 were designed from aminoquinazolines 1, which had previously been demonstrated to exhibit potent inhibition of Lck and T cell proliferation. In this report, we describe the synthesis and structure-activity relationships of a series of novel aminopyrimidine amides 3 possessing improved cellular potency and selectivity profiles relative to their aminoquinazoline predecessors 1. Orally bioavailable compound 13b inhibited the anti-CD3-induced production of interleukin-2 (IL-2) in mice in a dose-dependent manner (ED 50 = 9.4 mg/kg).

CiteXplore: 18321037

DOI: 10.1021/jm7010996