Document Report Card
Basic Information
ID: ALA1148324
Journal: J Med Chem
Title: Synthesis and structure-activity relationships of a novel series of 2,3,5,6,7,9-hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide K(ATP) channel openers: discovery of (-)-(9S)-9-(3-bromo-4-fluorophenyl)-2,3,5,6,7,9- hexahydrothieno[3,2-b]quinolin-8(4H)-one 1,1-dioxide (A-278637), a potent K(ATP) opener that selectively inhibits spontaneous bladder contractions.
Authors: Carroll WA, Altenbach RJ, Bai H, Brioni JD, Brune ME, Buckner SA, Cassidy C, Chen Y, Coghlan MJ, Daza AV, Drizin I, Fey TA, Fitzgerald M, Gopalakrishnan M, Gregg RJ, Henry RF, Holladay MW, King LL, Kort ME, Kym PR, Milicic I, Tang R, Turner SC, Whiteaker KL, Yi L, Zhang H, Sullivan JP.
Abstract: Structure-activity relationships were investigated on a novel series of sulfonyldihydropyridine-containing K(ATP) openers. Ring sizes, absolute stereochemistry, and aromatic substitution were evaluated for K(ATP) activity in guinea pig bladder cells using a fluorescence-based membrane potential assay and in a pig bladder strip assay. The inhibition of spontaneous bladder contractions in vitro was also examined for a select group of compounds. All compounds studied showed greater potency to inhibit spontaneous bladder contractions relative to their potencies to inhibit contractions elicited by electrical stimulation. In an anesthetized pig model of myogenic bladder overactivity, compound 14 and (-)-cromakalim 1 were found to inhibit spontaneous bladder contractions in vivo at plasma concentrations lower than those that affected hemodynamic parameters. Compound 14 showed approximately 5-fold greater selectivity than 1 in vivo and supports the concept that bladder-selective K(ATP) channel openers may have utility in the treatment of overactive bladder.
CiteXplore: 15163196
DOI: 10.1021/jm030356w