Document Report Card

Basic Information

ID: ALA1148745

Journal: J Med Chem

Title: Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents.

Authors: Grundt P, Prevatt KM, Cao J, Taylor M, Floresca CZ, Choi JK, Jenkins BG, Luedtke RR, Newman AH.

Abstract: Dopamine D3 receptor antagonists and partial agonists have been shown to modulate drug-seeking effects induced by cocaine and other abused substances. Compound 6 [PG01037, (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)-trans-but-2-enyl)-4-pyridine-2-ylbenzamide)] and related analogues are currently being evaluated in animal models of drug addiction. In these studies, a discrepancy between in vitro binding affinity, in vivo occupancy, and behavioral potency has been observed. The purpose of this study was to examine (1) modifications of the 2-pyridylphenyl moiety of 6 and (2) hydroxyl, acetyl, and cyclopropyl substitutions on the butylamide linking chain systematically coupled with 2-fluorenylamide or 2-pyridylphenylamide and 2-methoxy- or 2,3-dichloro-substituted phenylpiperazines to measure the impact on binding affinity, D2/D3 selectivity, lipophilicity, and function. In general, these modifications were well tolerated at the human dopamine D3 (hD3) receptor (Ki = 1-5 nM) as measured in competition binding assays. Several analogues showed >100-fold selectivity for dopamine D3 over D2 and D4 receptors. In addition, while all the derivatives with an olefinic linker were antagonists, in quinpirole-stimulated mitogenesis at hD3 receptors, several of the hydroxybutyl-linked analogues (16, 17, 21) showed partial agonist activity. Finally, several structural modifications reduced lipophilicities while retaining the desired binding profile.

CiteXplore: 17672446

DOI: 10.1021/jm0704200