Inhibition of oxidative metabolism of tocopherols with omega-N-heterocyclic derivatives of vitamin E.

Basic Information

ID: ALA1155958

Journal: Bioorg Med Chem

Title: Inhibition of oxidative metabolism of tocopherols with omega-N-heterocyclic derivatives of vitamin E.

Authors: Ohnmacht S, Nava P, West R, Parker R, Atkinson J.

Abstract: The oxidative metabolism of tocopherols and tocotrienols by monooxygenases is a key factor in the plasma and tissue clearance of forms of vitamin E other than alpha-tocopherol. It is well known that a commonly ingested form of vitamin E, gamma-tocopherol, has greatly reduced plasma half-life (faster clearance) than alpha-tocopherol. The tocotrienols are metabolized even faster than gamma-tocopherol. Both gamma-tocopherol and alpha- and delta-tocotrienol possess intriguing biological activities that are different from alpha-tocopherol, making them potentially of interest for therapeutic use. Unfortunately, the fast clearance of non-alpha-tocopherols from animal tissues is a significant hurdle to maximizing their effect(s) as dietary supplements. We report here the design and synthesis of N-heterocycle-containing analogues of alpha-tocopherol that act as inhibitors of Cyp4F2, the key monooxygenase responsible for omega-hydroxylation of the side chain of tocols. In particular, an omega-imidazole containing compound, 1, [(R)-2-(9-(1H-imidazol-1-yl)nonyl)-2,5,7,8-tetramethylchroman-6-ol] had an ED(50) for inhibition of gamma-CEHC production from gamma-tocopherol of approximately 1 nM when tested in HepG2 cells in culture. Furthermore, feeding of 1 to mice along with rapidly metabolized delta-tocopherol, resulted in a doubling of the delta-tocopherol/alpha-tocopherol ratio in liver (P<0.05). Thus, 1 may be a useful adjuvant to the therapeutic use of non-alpha-tocopherols.

CiteXplore: 18656365

DOI: 10.1016/j.bmc.2008.07.020

Patent ID: