Document Report Card

Basic Information

ID: ALA1155967

Journal: J Med Chem

Title: Design, synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives.

Authors: Yang LX, Huang KX, Li HB, Gong JX, Wang F, Feng YB, Tao QF, Wu YH, Li XK, Wu XM, Zeng S, Spencer S, Zhao Y, Qu J.

Abstract: A series of C7-O- and C20-O-amidated 2,3-dehydrosilybin (DHS) derivatives ((+/-)-1a-f and (+/-)-2), as well as a set of alkenylated DHS analogues ((+/-)-4a-f), were designed and de novo synthesized. A diesteric derivative of DHS ((+/-)-3) and two C23 esterified DHS analogues ((+/-)-5a and (+/-)-5b) were also prepared for comparison. The cell viability of PC12 cells, Fe(2+) chelation, lipid peroxidation (LPO), free radical scavenging, and xanthine oxidase inhibition models were utilized to evaluate their antioxidative and neuron protective properties. The study revealed that the diether at C7-OH and C20-OH as well as the monoether at C7-OH, which possess aliphatic substituted acetamides, demonstrated more potent LPO inhibition and Fe(2+) chelation compared to DHS and quercetin. Conversely, the diallyl ether at C7-OH and C20-OH was more potent in protection of PC12 cells against H(2)O(2)-induced injury than DHS and quercetin. Overall, the more lipophilic alkenylated DHS analogues were better performing neuroprotective agents than the acetamidated derivatives. The results in this study would be beneficial for optimizing the therapeutic potential of lignoflavonoids, especially in neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

CiteXplore: 19673490

DOI: 10.1021/jm900735p