Document Report Card

Basic Information

ID: ALA1156875

Journal: J Med Chem

Title: Anti-influenza drug discovery: structure-activity relationship and mechanistic insight into novel angelicin derivatives.

Authors: Yeh JY, Coumar MS, Horng JT, Shiao HY, Kuo FM, Lee HL, Chen IC, Chang CW, Tang WF, Tseng SN, Chen CJ, Shih SR, Hsu JT, Liao CC, Chao YS, Hsieh HP.

Abstract: By using a cell-based high throughput screening campaign, a novel angelicin derivative 6a was identified to inhibit influenza A (H1N1) virus induced cytopathic effect in Madin-Darby canine kidney cell culture in low micromolar range. Detailed structure-activity relationship studies of 6a revealed that the angelicin scaffold is essential for activity in pharmacophore B, while meta-substituted phenyl/2-thiophene rings are optimal in pharmacophore A and C. The optimized lead 4-methyl-9-phenyl-8-(thiophene-2-carbonyl)-furo[2,3-h]chromen-2-one (8g, IC(50) = 70 nM) showed 64-fold enhanced activity compared to the high throughput screening (HTS) hit 6a. Also, 8g was found effective in case of influenza A (H3N2) and influenza B virus strains similar to approved anti-influenza drug zanamivir (4). Preliminary mechanistic studies suggest that these compounds act as anti-influenza agents by inhibiting ribonucleoprotein (RNP) complex associated activity and have the potential to be developed further, which could form the basis for developing additional defense against influenza pandemics.

CiteXplore: 20092255

DOI: 10.1021/jm901570x