Document Report Card

Basic Information

ID: ALA1159052

Journal: Bioorg Med Chem

Title: Lobeline esters as novel ligands for neuronal nicotinic acetylcholine receptors and neurotransmitter transporters.

Authors: Hojahmat M, Horton DB, Norrholm SD, Miller DK, Grinevich VP, Deaciuc AG, Dwoskin LP, Crooks PA.

Abstract: Vesicular monoamine transporter-2 (VMAT2) is a viable target for development of pharmacotherapies for psychostimulant abuse. Lobeline (1) is a potent antagonist at alpha4beta2 * nicotinic acetylcholine receptors, has moderate affinity (K(i)=5.46microM) for VMAT2, and is being investigated currently as a clinical candidate for treatment of psychostimulant abuse. A series of carboxylic acid and sulfonic acid ester analogs 2-20 of lobeline were synthesized and evaluated for interaction with alpha4beta2 * and alpha7 * neuronal nicotinic acetylcholine receptors (nAChRs), the dopamine transporter (DAT), serotonin transporter (SERT) and VMAT2. Both carboxylic acid and sulfonic acid esters had low affinity at alpha7 * nAChRs. Similar to lobeline (K(i)=4nM), sulfonic acid esters had high affinity at alpha4beta2 * (K(i)=5-17nM). Aromatic carboxylic acid ester analogs of lobeline (2-4) were 100-1000-fold less potent than lobeline at alpha4beta2 * nAChRs, whereas aliphatic carboxylic acid ester analogs were 10-100-fold less potent than lobeline at alpha4beta2 *. Two representative lobeline esters, the 10-O-benzoate (2) and the 10-O-benzenesulfonate (10) were evaluated in the (36)Rb(+) efflux assay using rat thalamic synaptosomes, and were shown to be antagonists with IC(50) values of 0.85microM and 1.60microM, respectively. Both carboxylic and sulfonic acid esters exhibited a range of potencies (equipotent to 13-45-fold greater potency compared to lobeline) for inhibiting DAT and SERT, respectively, and like lobeline, had moderate affinity (K(i)=1.98-10.8microM) for VMAT2. One of the more interesting analogs, p-methoxybenzoic acid ester 4, had low affinity at alpha4beta2 * nAChRs (K(i)=19.3microM) and was equipotent with lobeline, at VMAT2 (K(i)=2.98microM), exhibiting a 6.5-fold selectivity for VMAT2 over alpha4beta2 nAChRs. Thus, esterification of the lobeline molecule may be a useful structural modification for the development of lobeline analogs with improved selectivity at VMAT2.

CiteXplore: 20036131

DOI: 10.1016/j.bmc.2009.12.002