Document Report Card
Basic Information
ID: ALA1212919
Journal: J Med Chem
Title: An efficient approach to the discovery of potent inhibitors against glycosyltransferases.
Authors: Hosoguchi K, Maeda T, Furukawa J, Shinohara Y, Hinou H, Sekiguchi M, Togame H, Takemoto H, Kondo H, Nishimura S.
Abstract: We describe a standardized approach for searching potent and selective inhibitors of glycosyltransferases by high throughput quantitative MALDI-TOFMS-based screening of focused compound libraries constructed by 1,3-dipolar cycloaddition of the desired azidosugar nucleotides with various alkynes. An aminooxy-functionalized reagent with a stable isotope was conjugated with oligosaccharides to afford glycopeptides as acceptor substrates with improved ion sensitivity. Enhanced ionization potency of new substrates allowed for MALDI-TOFMS-based facile and quantitative analysis of enzymatic glycosylation in the presence of glycosyl donor substrates. A non-natural synthetic sugar nucleotide was identified to be the first highly specific inhibitor for rat recombinant alpha2,3-(N)-sialyltransferase (alpha2,3ST, IC(50) = 8.2 microM), while this compound was proved to become a favorable substrate for rat recombinant alpha2,6-(N)-sialyltransferase (alpha2,6ST, K(m) = 125 microM). Versatility of this strategy was demonstrated by identification of two selective inhibitors for human recombinant alpha1,3-fucosyltransferase V (alpha1,3-FucT, K(i) = 293 nM) and alpha1,6-fucosyltransferase VIII (alpha1,6-FucT, K(i) = 13.8 microM).
CiteXplore: 20684602
DOI: 10.1021/jm100612r