Synthesis and biological evaluation of Apogossypolone derivatives as pan-active inhibitors of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family ...

Basic Information

ID: ALA1269007

Journal: J Med Chem

Title: Synthesis and biological evaluation of Apogossypolone derivatives as pan-active inhibitors of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins.

Authors: Wei J, Kitada S, Stebbins JL, Placzek W, Zhai D, Wu B, Rega MF, Zhang Z, Cellitti J, Yang L, Dahl R, Reed JC, Pellecchia M.

Abstract: Overexpression of antiapoptotic Bcl-2 family proteins is commonly related with tumor maintenance, progression, and chemoresistance. Inhibition of these antiapoptotic proteins is an attractive approach for cancer therapy. Guided by nuclear magnetic resonance (NMR) binding assays, a series of 5,5' substituted compound 6a (Apogossypolone) derivatives was synthesized and identified pan-active antagonists of antiapoptotic Bcl-2 family proteins, with binding potency in the low micromolar to nanomolar range. Compound 6f inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, and Mcl-1 with IC(50) values of 3.10, 3.12, and 2.05 μM, respectively. In a cellular assay, 6f potently inhibits cell growth in several human cancer cell lines in a dose-dependent manner. Compound 6f further displays in vivo efficacy in transgenic mice and demonstrated superior single-agent antitumor efficacy in a PPC-1 mouse xenograft model. Together with its negligible toxicity, compound 6f represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.

CiteXplore: 21033669

DOI: 10.1021/jm100746q

Patent ID: