Document Report Card
Basic Information
ID: ALA1795312
Journal: Eur J Med Chem
Title: Insights into the structural requirements of farnesyltransferase inhibitors as potential anti-tumor agents based on 3D-QSAR CoMFA and CoMSIA models.
Authors: Puntambekar DS, Giridhar R, Yadav MR.
Abstract: A three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on three different chemical series reported as selective farnesyltransferase (FTase) inhibitors employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA) techniques to investigate the structural requirements for substrates and derive a predictive model that may be used for the design of novel FTase inhibitors. Removal of outliers improved the predictive power of models developed for all three structurally diverse classes of compounds. 3D-QSAR models were derived for 3-aminopyrrolidinone derivatives (training set N=38, test set N=7), 2-amino-nicotinonitriles (training set N=46, test set N=13) and 1-aryl-1'-imidazolyl methyl ethers (training set N=35, test set N=5). The CoMFA models with steric and electrostatic fields exhibited r(2)(cv) 0.479-0.803, r(2)(ncv) 0.945-0.993, r(2)(pred) 0.686-0.811. The CoMSIA models displayed r(2)(cv) 0.411-0.814, r(2)(ncv) 0.923-0.984, r(2)(pred) 0.399-0.787. 3D contour maps generated from these models were analyzed individually, which provide the regions in space where interactive fields may influence the activity. The superimposition of contour maps on the active site of farnesyltransferase additionally helps in understanding the structural requirements of these inhibitors. 3D-QSAR models developed may guide our efforts in designing and predicting the FTase inhibitory activity of novel molecules.
CiteXplore: 17448576