Document Report Card

Basic Information

ID: ALA1933013

Journal: Bioorg Med Chem

Title: Synthesis, SAR, and preliminary mechanistic evaluation of novel antiproliferative N⁶,5'-bis-ureido- and 5'-carbamoyl-N⁶-ureidoadenosine derivatives.

Authors: Shelton JR, Cutler CE, Oliveira M, Balzarini J, Peterson MA.

Abstract: We have developed efficient methods for the preparation of N(6),5'-bis-ureidoadenosine derivatives and their 5'-carbamoyl-N(6)-ureido congeners. Treatment of 5'-azido-5'-deoxy-N(6)-(N-alkyl or -arylurea)adenosine derivatives (6a-d) with H(2)/Pd-C or Ph(3)P/H(2)O, followed by N-methyl-p-nitrophenylcarbamate gave N(6),5'-bis-ureido products 7a-d in 49-78% yield. Analogous derivatives in the 5'-carbamoyl-N(6)-ureido series were prepared by treatment of 2',3'-bis-O-TBS-adenosine (11) with N-methyl-p-nitrophenylcarbamate followed by acylation with appropriate isocyanates which gave 13a-d in 45-69% yield. A more versatile route for obtaining potentially vast libraries of compounds from both series was achieved by treatment of 5'-N-methylureido- or 5'-N-methylcarbamoyladenosine derivatives with ethylchlorformate to give N(6)-ethoxycarbonyl derivatives (9 and 14) in 55-63% yields, respectively. Simple heating of 9 or 14 in the presence of primary alkyl- or arylamines gave the corresponding N(6),5'-bis-ureido- or 5'-carbamoyl-N(6)-ureidoadenosine derivatives in good yields (33-72% and 39-83%; 10a-e and 15a-e, respectively). Significant antiproliferative activities (IC(50)≈4-10 μg/mL) were observed for a majority of the N(6),5'-bis-ureido derivatives, whereas the 5'-carbamoyl-N(6)-ureido derivatives were generally less active (IC(50) >100 μg/mL). A 2',3'-O-desilylated derivative (5'-amino-5'-deoxy-5'-N-methylureido-N(6)-(N-phenylcarbamoyl)adenosine, 16) was shown to inhibit binding of 16 of 441 protein kinases to immobilized ATP-binding site ligands by 30-40% in a competitive binding assay at 10 μM. Compound 16 was also shown to bind to bone morphogenetic protein receptor 1b (BMPR1b) with a Kd=11.5 ± 0.7 μM.

CiteXplore: 22189274

DOI: 10.1016/j.bmc.2011.11.043