Document Report Card

Basic Information

ID: ALA2073827

Journal: Mol Pharmacol

Title: Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells.

Authors: Briz O, Serrano MA, Rebollo N, Hagenbuch B, Meier PJ, Koepsell H, Marin JJ.

Abstract: Molecular bases for targeting bile acid-cisplatin derivatives Bamet-R2 [cis-diammine-chloro-cholylglycinate-platinum(II)] and Bamet-UD2 [cis-diammine-bisursodeoxycholate-platinum(II)] toward liver cells were investigated. Carriers for bile acids [human Na(+)-taurocholate cotransporting polypeptide (NTCP)], organic anions [organic anion transporting polypeptide (OATP)], and organic cations [organic cation transporter (OCT)] were expressed in Xenopus laevis oocytes (XO) and Chinese hamster ovary (CHO) cells. Drug uptake was measured by flameless atomic absorption of platinum. Rat Oatp1- or rat Ntcp-transfected CHO cells were able to take up Bamets, but not cisplatin, severalfold more efficiently than wild-type cells. This uptake was enhanced by butyrate-induced expression of both carriers. Uptake of both Bamets by Ntcp-transfected CHO cells was stimulated by extracellular sodium. The amount of Bamets, but not cisplatin, taken up by XO was enhanced when expressing OATP-A, OATP-C, NTCP, OCT1, or OCT2, a nonhepatic OCT isoform used for comparative purposes. Bamet uptake by XO was inhibited by known substrates of these carriers (glycocholate for NTCP and OATP-C, ouabain for OATP-A, and quinine for OCT1 and OCT2). Drug uptake versus substrate concentration revealed saturation kinetics (K(m) was in the 8-58 microM range), with the following order of efficiency of transport (V(max)/K(m)) for Bamet-R2: OATP-C > OCT2 > OATP-A > NTCP > OCT1; and the following order of efficiency of transport for Bamet-UD2: OATP-C > OCT2 > OATP-A > OCT1 > NTCP. Increasing the generation of cationic forms of Bamets by incubation in the absence of chloride increased drug uptake by OATP-A, OCT1, and OCT2 but reduced that achieved by NTCP and OATP-C. These results suggest a role for carriers of organic anions and cations in Bamet-R2 and Bamet-UD2 uptake, which may determine their ability to accumulate in liver tumor cells and/or be taken up and efficiently excreted by hepatocytes.

CiteXplore: 11901224

DOI: 10.1124/mol.61.4.853