Document Report Card
Basic Information
ID: ALA2073986
Journal: J Biol Chem
Title: Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice.
Authors: Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK.
Abstract: To begin to develop in vivo model systems for the assessment of the contributions of specific organic anion transporter (OAT) family members to detoxification, development, and disease, we carried out a targeted disruption of the murine organic anion transporter 3 (Oat3) gene. Surviving Oat3(-/-) animals appear healthy, are fertile, and do not exhibit any gross morphological tissue abnormalities. No Oat3 mRNA expression was detected in kidney, liver, or choroid plexus (CP) of Oat3(-/-) mice. A distinct phenotype manifested by a substantial loss of organic anion transport capacity in kidney and CP was identified. Uptake sensitive to inhibition by bromosulfophthalein or probenecid was observed for taurocholate, estrone sulfate, and para-aminohippurate in renal slices from wild-type mice, whereas in Oat3(-/-) animals transport of these substances was greatly reduced. No discernable differences in uptake were observed between hepatic slices from wild-type and Oat3(-/-) littermates, suggesting Oat3 does not play a major role in hepatic organic anion uptake. Cellular accumulation of fluorescein was reduced by approximately 75% in CP from Oat3(-/-) mice. However, capillary accumulation of fluorescein-methotrexate was unchanged, indicating the effects of Oat3 loss are restricted to the entry step and that Oat3 is localized to the apical membrane of CP. These data indicate a key role for Oat3 in systemic detoxification and in control of the organic anion distribution in cerebrospinal fluid.
CiteXplore: 12011098