Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist.

Basic Information

ID: ALA2169738

Journal: J Med Chem

Title: Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-β3-pseudopeptide agonist.

Authors: Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Ségalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J.

Abstract: 26RFa, a novel RFamide neuropeptide, is the endogenous ligand of the former orphan receptor GPR103. Intracerebroventricular injection of 26RFa and its C-terminal heptapeptide, 26RFa((20-26)), stimulates food intake in rodents. To develop potent, stable ligands of GPR103 with low molecular weight, we have designed a series of aza-β(3)-containing 26RFa((20-26)) analogues for their propensity to establish intramolecular hydrogen bonds, and we have evaluated their ability to increase [Ca(2+)](i) in GPR103-transfected cells. We have identified a compound, [Cmpi(21),aza-β(3)-Hht(23)]26RFa((21-26)), which was 8-fold more potent than 26RFa((20-26)) in mobilizing [Ca(2+)](i). This pseudopeptide was more stable in serum than 26RFa((20-26)) and exerted a longer lasting orexigenic effect in mice. This study constitutes an important step toward the development of 26RFa analogues that could prove useful for the treatment of feeding disorders.

CiteXplore: 22800498

DOI: 10.1021/jm300507d

Patent ID: