Document Report Card
Basic Information
ID: ALA2311394
Journal: J Med Chem
Title: Chemoenzymatic synthesis of new 2,4-syn-functionalized (S)-glutamate analogues and structure-activity relationship studies at ionotropic glutamate receptors and excitatory amino acid transporters.
Authors: Assaf Z, Larsen AP, Venskutonytė R, Han L, Abrahamsen B, Nielsen B, Gajhede M, Kastrup JS, Jensen AA, Pickering DS, Frydenvang K, Gefflaut T, Bunch L.
Abstract: In the mammalian central nervous system, (S)-glutamate (Glu) is released from the presynaptic neuron where it activates a plethora of pre- and postsynaptic Glu receptors. The fast acting ionotropic Glu receptors (iGluRs) are ligand gated ion channels and are believed to be involved in a vast number of neurological functions such as memory and learning, synaptic plasticity, and motor function. The synthesis of 14 enantiopure 2,4-syn-Glu analogues 2b-p is accessed by a short and efficient chemoenzymatic approach starting from readily available cyclohexanone 3. Pharmacological characterization at the iGluRs and EAAT1-3 subtypes revealed analogue 2i as a selective GluK1 ligand with low nanomolar affinity. Two X-ray crystal structures of the key analogue 2i in the ligand-binding domain (LBD) of GluA2 and GluK3 were determined. Partial domain closure was seen in the GluA2-LBD complex with 2i comparable to that induced by kainate. In contrast, full domain closure was observed in the GluK3-LBD complex with 2i, similar to that of GluK3-LBD with glutamate bound.
CiteXplore: 23414088
DOI: 10.1021/jm301433m