ID: ALA2413068
Journal: Bioorg Med Chem
Title: Solid-phase synthesis of 5'-triphosphate 2'-5'-oligoadenylates analogs with 3'-O-biolabile groups and their evaluation as RNase L activators and antiviral drugs.
Authors: Thillier Y, Stevens SK, Moy C, Taylor J, Vasseur JJ, Beigelman L, Debart F.
Abstract: 5'-Triphosphate 2'-5'-oligoadenylate (2-5A) is the central player in the 2-5A system that is an innate immunity pathway in response to the presence of infectious agents. Intracellular endoribonuclease RNase L activated by 2-5A cleaves viral and cellular RNA resulting in apoptosis. The major limitations of 2-5A for therapeutic applications is the short biological half-life and poor cellular uptake. Modification of 2-5A with biolabile and lipophilic groups that facilitate its uptake, increase its in vivo stability and release the parent 2-5A drug in an intact form offer an alternative approach to therapeutic use of 2-5A. Here we have synthesized the trimeric and tetrameric 2-5A species bearing hydrophobic and enzymolabile pivaloyloxymethyl groups at 3'-positions and a triphosphate at the 5'-end. Both analogs were able to activate RNase L and the production of the trimer 2-5A (the most active) was scaled up to the milligram scale for antiviral evaluation in cells infected by influenza virus or respiratory syncytial virus. The trimer analog demonstrated some significant antiviral activity.
CiteXplore: 23810677
DOI: 10.1016/j.bmc.2013.06.008
Patent ID: ┄