1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases.
Basic Information
ID: ALA3091303
Journal: Bioorg Med Chem
Title: 1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases.
Authors: Koch P, Akkari R, Brunschweiger A, Borrmann T, Schlenk M, Küppers P, Köse M, Radjainia H, Hockemeyer J, Drabczyńska A, Kieć-Kononowicz K, Müller CE.
Abstract: Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC(50) human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC(50) MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.
CiteXplore: 24139167
DOI: 10.1016/j.bmc.2013.09.044
Patent ID: ┄