Scaffold-Hopping and Structure-Based Discovery of Potent, Selective, And Brain Penetrant N-(1H-Pyrazol-3-yl)pyridin-2-amine Inhibitors of Dual Leucine...

Basic Information

ID: ALA3627690

Journal: J Med Chem

Title: Scaffold-Hopping and Structure-Based Discovery of Potent, Selective, And Brain Penetrant N-(1H-Pyrazol-3-yl)pyridin-2-amine Inhibitors of Dual Leucine Zipper Kinase (DLK, MAP3K12).

Authors: Patel S, Harris SF, Gibbons P, Deshmukh G, Gustafson A, Kellar T, Lin H, Liu X, Liu Y, Liu Y, Ma C, Scearce-Levie K, Ghosh AS, Shin YG, Solanoy H, Wang J, Wang B, Yin J, Siu M, Lewcock JW.

Abstract: Recent data suggest that inhibition of dual leucine zipper kinase (DLK, MAP3K12) has therapeutic potential for treatment of a number of indications ranging from acute neuronal injury to chronic neurodegenerative disease. Thus, high demand exists for selective small molecule DLK inhibitors with favorable drug-like properties and good CNS penetration. Herein we describe a shape-based scaffold hopping approach to convert pyrimidine 1 to a pyrazole core with improved physicochemical properties. We also present the first crystal structures of DLK. By utilizing a combination of property and structure-based design, we identified inhibitor 11, a potent, selective, and brain-penetrant inhibitor of DLK with activity in an in vivo nerve injury model.

CiteXplore: 26431428

DOI: 10.1021/acs.jmedchem.5b01072

Patent ID: