Probing the Hydrophobic Binding Pocket of G-Protein-Coupled Lysophosphatidylserine Receptor GPR34/LPS1 by Docking-Aided Structure-Activity Analysis.

Basic Information

ID: ALA4011662

Journal: J Med Chem

Title: Probing the Hydrophobic Binding Pocket of G-Protein-Coupled Lysophosphatidylserine Receptor GPR34/LPS1 by Docking-Aided Structure-Activity Analysis.

Authors: Sayama M, Inoue A, Nakamura S, Jung S, Ikubo M, Otani Y, Uwamizu A, Kishi T, Makide K, Aoki J, Hirokawa T, Ohwada T.

Abstract: The ligands of certain G-protein-coupled receptors (GPCRs) have been identified as endogenous lipids, such as lysophosphatidylserine (LysoPS). Here, we analyzed the molecular basis of the structure-activity relationship of ligands of GPR34, one of the LysoPS receptor subtypes, focusing on recognition of the long-chain fatty acid moiety by the hydrophobic pocket. By introducing benzene ring(s) into the fatty acid moiety of 2-deoxy-LysoPS, we explored the binding site's preference for the hydrophobic shape. A tribenzene-containing fatty acid surrogate with modifications of the terminal aromatic moiety showed potent agonistic activity toward GPR34. Computational docking of these derivatives with a homology modeling/molecular dynamics-based virtual binding site of GPR34 indicated that a kink in the benzene-based lipid surrogates matches the L-shaped hydrophobic pocket of GPR34. A tetrabenzene-based lipid analogue bearing a bulky tert-butyl group at the 4-position of the terminal benzene ring exhibited potent GPR34 agonistic activity, validating the present hydrophobic binding pocket model.

CiteXplore: 28715213

DOI: 10.1021/acs.jmedchem.7b00693

Patent ID: