Document Report Card
Basic Information
ID: ALA4020835
Journal: J Med Chem
Title: Optimization of Metabolic and Renal Clearance in a Series of Indole Acid Direct Activators of 5'-Adenosine Monophosphate-Activated Protein Kinase (AMPK).
Authors: Edmonds DJ, Kung DW, Kalgutkar AS, Filipski KJ, Ebner DC, Cabral S, Smith AC, Aspnes GE, Bhattacharya SK, Borzilleri KA, Brown JA, Calabrese MF, Caspers NL, Cokorinos EC, Conn EL, Dowling MS, Eng H, Feng B, Fernando DP, Genung NE, Herr M, Kurumbail RG, Lavergne SY, Lee EC, Li Q, Mathialagan S, Miller RA, Panteleev J, Polivkova J, Rajamohan F, Reyes AR, Salatto CT, Shavnya A, Thuma BA, Tu M, Ward J, Withka JM, Xiao J, Cameron KO.
Abstract: Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.
CiteXplore: 29466005