Document Report Card

Basic Information

ID: ALA4130377

Journal: Eur J Med Chem

Title: A novel glucagon-like peptide-1/glucagon receptor dual agonist exhibits weight-lowering and diabetes-protective effects.

Authors: Zhou J, Cai X, Huang X, Dai Y, Sun L, Zhang B, Yang B, Lin H, Huang W, Qian H.

Abstract: Glucagon has plenty of effects via a specific glucagon receptor(GCGR) like elevating the blood glucose, improving fatty acids metabolism, energy expenditure and increasing lipolysis in adipose tissue. The most important role of glucagon is to regulate the blood glucose, but the emergent possibilities of hyperglycaemia is exist. Glucagon could also slightly activate glucagon-like peptide-1 receptor(GLP-1R), which lead to blood glucose lowering effect. This study aims to erase the likelihood of hyperglycaemia and to remain the inherent catabolic effects through improving GLP-1R activation and deteriorating GCGR activation so as to lower the bodyweight and show diabetes-protective effects. Firstly, twelve cysteine modified GLP-1/GCGR dual agonists were synthesized (1-12). Then, the GLP-1R/GCGR mediated activation and biological activity in normal ICR mice were comprehensively performed. Compounds substituted by cysteine at positions 22, 23 and 25 in glucagon were observed to be better regulators of the body weight and blood glucose. To prolong the half-lives of derivatives, various fatty side chain maleimides were modified to optimal glucagon analogues. Laurate maleimide conjugate 4d was the most potent. Administration of 1000 nmol/kg 4d once every two days for a month normalized adiposity and glucose tolerance in diet-induced obese (DIO) mice. Improvements in plasma metabolic parameters including insulin, leptin, and adiponectin were observed. These studies suggest that compound 4d behaves well in lowering body weight and maintaining energy expenditure without a chance of hyperglycaemia, 4d has strong clinical potential as an efficient GLP-1/GCGR agonist in the prevention and treatment of obesity and dyslipidemia.

CiteXplore: 28772236

DOI: 10.1016/j.ejmech.2017.07.046