Document Report Card

Basic Information

ID: ALA4130590

Journal: ACS Med Chem Lett

Title: Mtb PKNA/PKNB Dual Inhibition Provides Selectivity Advantages for Inhibitor Design To Minimize Host Kinase Interactions.

Authors: Wang T, Bemis G, Hanzelka B, Zuccola H, Wynn M, Moody CS, Green J, Locher C, Liu A, Gao H, Xu Y, Wang S, Wang J, Bennani YL, Thomson JA, Müh U.

Abstract: Drug resistant tuberculosis (TB) infections are on the rise and antibiotics that inhibit Mycobacterium tuberculosis through a novel mechanism could be an important component of evolving TB therapy. Protein kinase A (PknA) and protein kinase B (PknB) are both essential serine-threonine kinases in M. tuberculosis. Given the extensive knowledge base in kinase inhibition, these enzymes present an interesting opportunity for antimycobacterial drug discovery. This study focused on targeting both PknA and PknB while improving the selectivity window over related mammalian kinases. Compounds achieved potent inhibition (Ki ≈ 5 nM) of both PknA and PknB. A binding pocket unique to mycobacterial kinases was identified. Substitutions that filled this pocket resulted in a 100-fold differential against a broad selection of mammalian kinases. Reducing lipophilicity improved antimycobacterial activity with the most potent compounds achieving minimum inhibitory concentrations ranging from 3 to 5 μM (1-2 μg/mL) against the H37Ra isolate of M. tuberculosis.

CiteXplore: 29259738

DOI: 10.1021/acsmedchemlett.7b00239