Cyclic Cystine-Bridged Peptides from the Marine Sponge Clathria basilana Induce Apoptosis in Tumor Cells and Depolarize the Bacterial Cytoplasmic Memb...

Basic Information

ID: ALA4138145

Journal: J Nat Prod

Title: Cyclic Cystine-Bridged Peptides from the Marine Sponge Clathria basilana Induce Apoptosis in Tumor Cells and Depolarize the Bacterial Cytoplasmic Membrane.

Authors: Mokhlesi A, Stuhldreier F, Wex KW, Berscheid A, Hartmann R, Rehberg N, Sureechatchaiyan P, Chaidir C, Kassack MU, Kalscheuer R, Brötz-Oesterhelt H, Wesselborg S, Stork B, Daletos G, Proksch P.

Abstract: Investigation of the sponge Clathria basilana collected in Indonesia afforded five new peptides, including microcionamides C (1) and D (2), gombamides B (4), C (5), and D (6), and an unusual amide, (E)-2-amino-3-methyl-N-styrylbutanamide (7), along with 11 known compounds, among them microcionamide A (3). The structures of the new compounds were elucidated by one- and two-dimensional NMR spectroscopy as well as by high-resolution mass spectrometry. The absolute configurations of the constituent amino acid residues in 1-7 were determined by Marfey's analysis. Microcionamides A, C, and D (1-3) showed in vitro cytotoxicity against lymphoma (Ramos) and leukemia cell lines (HL-60, Nomo-1, Jurkat J16), as well as against a human ovarian carcinoma cell line (A2780) with IC50 values ranging from 0.45 to 28 μM. Mechanistic studies showed that compounds 1-3 rapidly induce apoptotic cell death in Jurkat J16 and Ramos cells and that 1 and 2 potently block autophagy upon starvation conditions, thereby impairing pro-survival signaling of cancer cells. In addition, microcionamides C and A (1 and 3) inhibited bacterial growth of Staphylococcus aureus and Enterococcus faecium with minimal inhibitory concentrations between 6.2 and 12 μM. Mechanistic studies indicate dissipation of the bacterial membrane potential.

CiteXplore: 29094598

DOI: 10.1021/acs.jnatprod.7b00477

Patent ID: