Discovery and Structure-Activity Relationships of Nociceptin Receptor Partial Agonists That Afford Symptom Ablation in Parkinson's Disease Models.
Basic Information
ID: ALA4354845
Journal: J Med Chem
Title: Discovery and Structure-Activity Relationships of Nociceptin Receptor Partial Agonists That Afford Symptom Ablation in Parkinson's Disease Models.
Authors: Kamakolanu UG, Meyer ME, Yasuda D, Polgar WE, Marti M, Mercatelli D, Pisanò CA, Brugnoli A, Morari M, Zaveri NT.
Abstract: A novel series of C(3)-substituted piperdinylindoles were developed as nociceptin opioid receptor (NOP) partial agonists to explore a pharmacological hypothesis that NOP partial agonists would afford a dual pharmacological action of attenuating Parkinson's disease (PD) motor symptoms and development of levodopa-induced dyskinesias. SAR around the C-3 substituents investigated effects on NOP binding, intrinsic activity, and selectivity and showed that while the C(3)-substituted indoles are selective, high affinity NOP ligands, the steric, polar, and cationic nature of the C-3 substituents affected intrinsic activity to afford partial agonists with a range of efficacies. Compounds 4, 5, and 9 with agonist efficacies between 25% and 35% significantly attenuated motor deficits in the 6-OHDA-hemilesioned rat model of PD. Further, unlike NOP antagonists, which appear to worsen dyskinesia expression, these NOP partial agonists did not attenuate or worsen dyskinesia expression. The NOP partial agonists and their SAR reported here may be useful to develop nondopaminergic treatments for PD.
CiteXplore: 31951130
DOI: 10.1021/acs.jmedchem.9b02134
Patent ID: ┄