Synthesis and evaluation of 1,3,4-oxadiazole derivatives for development as broad-spectrum antibiotics.
Basic Information
ID: ALA4364345
Journal: Bioorg Med Chem
Title: Synthesis and evaluation of 1,3,4-oxadiazole derivatives for development as broad-spectrum antibiotics.
Authors: Tresse C, Radigue R, Gomes Von Borowski R, Thepaut M, Hanh Le H, Demay F, Georgeault S, Dhalluin A, Trautwetter A, Ermel G, Blanco C, van de Weghe P, Jean M, Giard JC, Gillet R.
Abstract: The reality and intensity of antibiotic resistance in pathogenic bacteria calls for the rapid development of new antimicrobial drugs. In bacteria, trans-translation is the primary quality control mechanism for rescuing ribosomes arrested during translation. Because trans-translation is absent in eukaryotes but necessary to avoid ribosomal stalling and therefore essential for bacterial survival, it is a promising target either for novel antibiotics or for improving the activities of the protein synthesis inhibitors already in use. Oxadiazole derivatives display strong bactericidal activity against a large number of bacteria, but their effects on trans-translation were recently questioned. In this work, a series of new 1,3,4-oxadiazole derivatives and analogs were synthesized and assessed for their efficiency as antimicrobial agents against a wide range of gram-positive and gram-negative pathogenic strains. Despite the strong antimicrobial activity observed in these molecules, it turns out that they do not target trans-translation in vivo, but they definitely act on other cellular pathways.
CiteXplore: 31540826
DOI: 10.1016/j.bmc.2019.115097
Patent ID: ┄