Identification and Optimization of Novel Small c-Abl Kinase Activators Using Fragment and HTS Methodologies.

Basic Information

ID: ALA4411335

Journal: J Med Chem

Title: Identification and Optimization of Novel Small c-Abl Kinase Activators Using Fragment and HTS Methodologies.

Authors: Simpson GL, Bertrand SM, Borthwick JA, Campobasso N, Chabanet J, Chen S, Coggins J, Cottom J, Christensen SB, Dawson HC, Evans HL, Hobbs AN, Hong X, Mangatt B, Munoz-Muriedas J, Oliff A, Qin D, Scott-Stevens P, Ward P, Washio Y, Yang J, Young RJ.

Abstract: Abelson kinase (c-Abl) is a ubiquitously expressed, nonreceptor tyrosine kinase which plays a key role in cell differentiation and survival. It was hypothesized that transient activation of c-Abl kinase via displacement of the N-terminal autoinhibitory "myristoyl latch", may lead to an increased hematopoietic stem cell differentiation. This would increase the numbers of circulating neutrophils and so be an effective treatment for chemotherapy-induced neutropenia. This paper describes the discovery and optimization of a thiazole series of novel small molecule c-Abl activators, initially identified by a high throughput screening. Subsequently, a scaffold-hop, which exploited the improved physicochemical properties of a dihydropyrazole analogue, identified through fragment screening, delivered potent, soluble, cell-active c-Abl activators, which demonstrated the intracellular activation of c-Abl in vivo.

CiteXplore: 30689376

DOI: 10.1021/acs.jmedchem.8b01872

Patent ID: