Discovery of Roblitinib (FGF401) as a Reversible-Covalent Inhibitor of the Kinase Activity of Fibroblast Growth Factor Receptor 4.
Basic Information
ID: ALA4715854
Journal: J Med Chem
Title: Discovery of Roblitinib (FGF401) as a Reversible-Covalent Inhibitor of the Kinase Activity of Fibroblast Growth Factor Receptor 4.
Authors: Fairhurst RA,Knoepfel T,Buschmann N,Leblanc C,Mah R,Todorov M,Nimsgern P,Ripoche S,Niklaus M,Warin N,Luu VH,Madoerin M,Wirth J,Graus-Porta D,Weiss A,Kiffe M,Wartmann M,Kinyamu-Akunda J,Sterker D,Stamm C,Adler F,Buhles A,Schadt H,Couttet P,Blank J,Galuba I,Trappe J,Voshol J,Ostermann N,Zou C,Berghausen J,Del Rio Espinola A,Jahnke W,Furet P
Abstract: FGF19 signaling through the FGFR4/β-klotho receptor complex has been shown to be a key driver of growth and survival in a subset of hepatocellular carcinomas, making selective FGFR4 inhibition an attractive treatment opportunity. A kinome-wide sequence alignment highlighted a poorly conserved cysteine residue within the FGFR4 ATP-binding site at position 552, two positions beyond the gate-keeper residue. Several strategies for targeting this cysteine to identify FGFR4 selective inhibitor starting points are summarized which made use of both rational and unbiased screening approaches. The optimization of a 2-formylquinoline amide hit series is described in which the aldehyde makes a hemithioacetal reversible-covalent interaction with cysteine 552. Key challenges addressed during the optimization are improving the FGFR4 potency, metabolic stability, and solubility leading ultimately to the highly selective first-in-class clinical candidate roblitinib.
CiteXplore: 32930584
DOI: 10.1021/acs.jmedchem.0c01019
Patent ID: ┄