Discovery and Optimization of 2<i>H</i>-1λ<sup>2</sup>-Pyridin-2-one Inhibitors of Mutant Isocitrate Dehydrogenase 1 for the Treatment of Cancer.

Basic Information

ID: ALA4811250

Journal: J Med Chem

Title: Discovery and Optimization of 2H-1λ2-Pyridin-2-one Inhibitors of Mutant Isocitrate Dehydrogenase 1 for the Treatment of Cancer.

Authors: Rohde JM, Karavadhi S, Pragani R, Liu L, Fang Y, Zhang W, McIver A, Zheng H, Liu Q, Davis MI, Urban DJ, Lee TD, Cheff DM, Hollingshead M, Henderson MJ, Martinez NJ, Brimacombe KR, Yasgar A, Zhao W, Klumpp-Thomas C, Michael S, Covey J, Moore WJ, Stott GM, Li Z, Simeonov A, Jadhav A, Frye S, Hall MD, Shen M, Wang X, Patnaik S, Boxer MB.

Abstract: Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are oncogenic for a number of malignancies, primarily low-grade gliomas and acute myeloid leukemia. We report a medicinal chemistry campaign around a 7,7-dimethyl-7,8-dihydro-2H-1λ2-quinoline-2,5(6H)-dione screening hit against the R132H and R132C mutant forms of isocitrate dehydrogenase (IDH1). Systematic SAR efforts produced a series of potent pyrid-2-one mIDH1 inhibitors, including the atropisomer (+)-119 (NCATS-SM5637, NSC 791985). In an engineered mIDH1-U87-xenograft mouse model, after a single oral dose of 30 mg/kg, 16 h post dose, between 16 and 48 h, (+)-119 showed higher tumoral concentrations that corresponded to lower 2-HG concentrations, when compared with the approved drug AG-120 (ivosidenib).

CiteXplore: 33822623

DOI: 10.1021/acs.jmedchem.1c00019

Patent ID: