Optimization of the clofazimine structure leads to a highly water-soluble C3-aminopyridinyl riminophenazine endowed with improved anti-Wnt and anti-ca...
Basic Information
ID: ALA4825687
Journal: Eur J Med Chem
Title: Optimization of the clofazimine structure leads to a highly water-soluble C3-aminopyridinyl riminophenazine endowed with improved anti-Wnt and anti-cancer activity in vitro and in vivo.
Authors: Koval A, Bassanini I, Xu J, Tonelli M, Boido V, Sparatore F, Amant F, Annibali D, Leucci E, Sparatore A, Katanaev VL.
Abstract: Triple-negative breast cancer (TNBC) is a cancer subtype critically dependent upon excessive activation of Wnt pathway. The anti-mycobacterial drug clofazimine is an efficient inhibitor of canonical Wnt signaling in TNBC, reducing tumor cell proliferation in vitro and in animal models. These properties make clofazimine a candidate to become first targeted therapy against TNBC. In this work, we optimized the clofazimine structure to enhance its water solubility and potency as a Wnt inhibitor. After extensive structure-activity relationships investigations, the riminophenazine 5-(4-(chlorophenyl)-3-((2-(piperazin-1-yl)ethyl)imino)-N-(pyridin-3-yl)-3,5-dihydrophenazin-2-amine (MU17) was identified as the new lead compound for the riminophenazine-based targeted therapy against TNBC and Wnt-dependent cancers. Compared to clofazimine, the water-soluble MU17 displayed a 7-fold improved potency against Wnt signaling in TNBC cells resulting in on-target suppression of tumor growth in a patient-derived mouse model of TNBC. Moreover, allowing the administration of reduced yet effective dosages, MU17 displayed no adverse effects, most notably no clofazimine-related skin coloration.
CiteXplore: 34116325
DOI: 10.1016/j.ejmech.2021.113562
Patent ID: ┄