Document Report Card

Basic Information

ID: ALA4834403

Journal: J Med Chem

Title: Design and Synthesis of Novel Epigenetic Inhibitors Targeting Histone Deacetylases, DNA Methyltransferase 1, and Lysine Methyltransferase G9a with In Vivo Efficacy in Multiple Myeloma.

Authors: Rabal O, San José-Enériz E, Agirre X, Sánchez-Arias JA, de Miguel I, Ordoñez R, Garate L, Miranda E, Sáez E, Vilas-Zornoza A, Pineda-Lucena A, Estella A, Zhang F, Wu W, Xu M, Prosper F, Oyarzabal J.

Abstract: Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC50 < 200 nM). Additionally, lysine methyltransferase G9a inhibitory activity is achieved (from a low nanomolar range) by introduction of a key lysine mimic group at the 7-position of the quinoline ring. The corresponding epigenetic functional cellular responses are observed: histone-3 acetylation, DNA hypomethylation, and decreased histone-3 methylation at lysine-9. These chemical probes, multitarget epigenetic inhibitors, were validated against the multiple myeloma cell line MM1.S, demonstrating promising in vitro activity of 12a (CM-444) with GI50 of 32 nM, an adequate therapeutic window (>1 log unit), and a suitable pharmacokinetic profile. In vivo, 12a achieved significant antitumor efficacy in a xenograft mouse model of human multiple myeloma.

CiteXplore: 33661013

DOI: 10.1021/acs.jmedchem.0c02255