Design, synthesis, and biological evaluation of novel pyrrolidinone small-molecule Formyl peptide receptor 2 agonists.
Basic Information
ID: ALA5038608
Journal: Eur J Med Chem
Title: Design, synthesis, and biological evaluation of novel pyrrolidinone small-molecule Formyl peptide receptor 2 agonists.
Authors: Maciuszek M, Ortega-Gomez A, Maas SL, Garrido-Mesa J, Ferraro B, Perretti M, Merritt A, Nicolaes GAF, Soehnlein O, Chapman TM.
Abstract: A series of Formyl peptide receptor 2 small molecule agonists with a pyrrolidinone scaffold, derived from a combination of pharmacophore modelling and docking studies, were designed and synthesized. The GLASS (GPCR-Ligand Association) database was screened using a pharmacophore model. The most promising novel ligand structures were chosen and then tested in cellular assays (calcium mobilization and β-arrestin assays). Amongst the selected ligands, two pyrrolidinone compounds (7 and 8) turned out to be the most active. Moreover compound 7 was able to reduce the number of adherent neutrophils in a human neutrophil static adhesion assay which indicates its anti-inflammatory and proresolving properties. Further exploration and optimization of new ligands showed that heterocyclic rings, e.g. pyrazole directly connected to the pyrrolidinone scaffold, provide good stability and a boost in the agonistic activity. The compounds of most interest (7 and 30) were tested in an ERK phosphorylation assay, demonstrating selectivity towards FPR2 over FPR1. Compound 7 was examined in an in vivo mouse pharmacokinetic study. Compound 7 may be a valuable in vivo tool and help improve understanding of the role of the FPR2 receptor in the resolution of inflammation process.
CiteXplore: 34536667
DOI: 10.1016/j.ejmech.2021.113805
Patent ID: ┄