Discovery of a Partial Glucokinase Activator Clinical Candidate: Diethyl ((3-(3-((5-(Azetidine-1-carbonyl)pyrazin-2-yl)oxy)-5-isopropoxybenzamido)-1<i...

Basic Information

ID: ALA5046279

Journal: J Med Chem

Title: Discovery of a Partial Glucokinase Activator Clinical Candidate: Diethyl ((3-(3-((5-(Azetidine-1-carbonyl)pyrazin-2-yl)oxy)-5-isopropoxybenzamido)-1H-pyrazol-1-yl)methyl)phosphonate (BMS-820132).

Authors: Shi Y, Wang Y, Meng W, Brigance RP, Ryono DE, Bolton S, Zhang H, Chen S, Smirk R, Tao S, Tino JA, Williams KN, Sulsky R, Nielsen L, Ellsworth B, Wong MKY, Sun JH, Leith LW, Sun D, Wu DR, Gupta A, Rampulla R, Mathur A, Chen BC, Wang A, Fuentes-Catanio HG, Kunselman L, Cap M, Zalaznick J, Ma X, Liu H, Taylor JR, Zebo R, Jones B, Kalinowski S, Swartz J, Staal A, O'Malley K, Kopcho L, Muckelbauer JK, Krystek SR, Spronk SA, Marcinkeviciene J, Everlof G, Chen XQ, Xu C, Li YX, Langish RA, Yang Y, Wang Q, Behnia K, Fura A, Janovitz EB, Pannacciulli N, Griffen S, Zinker BA, Krupinski J, Kirby M, Whaley J, Zahler R, Barrish JC, Robl JA, Cheng PTW.

Abstract: Glucokinase (GK) is a key regulator of glucose homeostasis, and its small-molecule activators represent a promising opportunity for the treatment of type 2 diabetes. Several GK activators have been advanced into clinical trials and have demonstrated promising efficacy; however, hypoglycemia represents a key risk for this mechanism. In an effort to mitigate this hypoglycemia risk while maintaining the efficacy of the GK mechanism, we have investigated a series of amino heteroaryl phosphonate benzamides as ''partial" GK activators. The structure-activity relationship studies starting from a "full GK activator" 11, which culminated in the discovery of the "partial GK activator" 31 (BMS-820132), are discussed. The synthesis and in vitro and in vivo preclinical pharmacology profiles of 31 and its pharmacokinetics (PK) are described. Based on its promising in vivo efficacy and preclinical ADME and safety profiles, 31 was advanced into human clinical trials.

CiteXplore: 35179904

DOI: 10.1021/acs.jmedchem.1c02110

Patent ID: