Document Report Card

Basic Information

ID: ALA5104201

Journal: J Med Chem

Title: Prodrugs of a 1-Hydroxy-2-oxopiperidin-3-yl Phosphonate Enolase Inhibitor for the Treatment of ENO1-Deleted Cancers.

Authors: Yan VC, Pham CD, Ballato ES, Yang KL, Arthur K, Khadka S, Barekatain Y, Shrestha P, Tran T, Poral AH, Washington M, Raghavan S, Czako B, Pisaneschi F, Lin YH, Satani N, Hammoudi N, Ackroyd JJ, Georgiou DK, Millward SW, Muller FL.

Abstract: Cancers harboring homozygous deletion of the glycolytic enzyme enolase 1 (ENO1) are selectively vulnerable to inhibition of the paralogous isoform, enolase 2 (ENO2). A previous work described the sustained tumor regression activities of a substrate-competitive phosphonate inhibitor of ENO2, 1-hydroxy-2-oxopiperidin-3-yl phosphonate (HEX) (5), and its bis-pivaloyoxymethyl prodrug, POMHEX (6), in an ENO1-deleted intracranial orthotopic xenograft model of glioblastoma [Nature Metabolism 2020, 2, 1423-1426]. Due to poor pharmacokinetics of bis-ester prodrugs, this study was undertaken to identify potential non-esterase prodrugs for further development. Whereas phosphonoamidate esters were efficiently bioactivated in ENO1-deleted glioma cells, McGuigan prodrugs were not. Other strategies, including cycloSal and lipid prodrugs of 5, exhibited low micromolar IC50 values in ENO1-deleted glioma cells and improved stability in human serum over 6. The activity of select prodrugs was also probed using the NCI-60 cell line screen, supporting its use to examine the relationship between prodrugs and cell line-dependent bioactivation.

CiteXplore: 36251833

DOI: 10.1021/acs.jmedchem.2c01039