Document Report Card

Basic Information

ID: ALA5150072

Journal: J Med Chem

Title: Discovery and Crystallographic Studies of Nonpeptidic Piperazine Derivatives as Covalent SARS-CoV-2 Main Protease Inhibitors.

Authors: Gao S, Song L, Claff T, Woodson M, Sylvester K, Jing L, Weiße RH, Cheng Y, Sträter N, Schäkel L, Gütschow M, Ye B, Yang M, Zhang T, Kang D, Toth K, Tavis J, Tollefson AE, Müller CE, Zhan P, Liu X.

Abstract: The spread of SARS-CoV-2 keeps threatening human life and health, and small-molecule antivirals are in demand. The main protease (Mpro) is an effective and highly conserved target for anti-SARS-CoV-2 drug design. Herein, we report the discovery of potent covalent non-peptide-derived Mpro inhibitors. A series of covalent compounds with a piperazine scaffold containing different warheads were designed and synthesized. Among them, GD-9 was identified as the most potent compound with a significant enzymatic inhibition of Mpro (IC50 = 0.18 μM) and good antiviral potency against SARS-CoV-2 (EC50 = 2.64 μM), similar to that of remdesivir (EC50 = 2.27 μM). Additionally, GD-9 presented favorable target selectivity for SARS-CoV-2 Mpro versus human cysteine proteases. The X-ray co-crystal structure confirmed our original design concept showing that GD-9 covalently binds to the active site of Mpro. Our nonpeptidic covalent inhibitors provide a basis for the future development of more efficient COVID-19 therapeutics.

CiteXplore: 36475694

DOI: 10.1021/acs.jmedchem.2c01716