Document Report Card

Basic Information

ID: ALA5154890

Journal: J Med Chem

Title: Parallel Optimization of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor.

Authors: Miller DC, Reuillon T, Molyneux L, Blackburn T, Cook SJ, Edwards N, Endicott JA, Golding BT, Griffin RJ, Hardcastle I, Harnor SJ, Heptinstall A, Lochhead P, Martin MP, Martin NC, Myers S, Newell DR, Noble RA, Phillips N, Rigoreau L, Thomas H, Tucker JA, Wang LZ, Waring MJ, Wong AC, Wedge SR, Noble MEM, Cano C.

Abstract: The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.

CiteXplore: 35468293

DOI: 10.1021/acs.jmedchem.1c01756