Document Report Card
Basic Information
ID: ALA5214910
Journal: J Med Chem
Title: Rational Design of Dipicolylamine-Containing Carbazole Amphiphiles Combined with Zn2+ as Potent Broad-Spectrum Antibacterial Agents with a Membrane-Disruptive Mechanism.
Authors: Liu J, Li H, Li H, Fang S, Shi J, Chen Y, Zhong R, Liu S, Lin S.
Abstract: Antibiotic resistance has become one of the most urgently important problems facing healthcare providers. A novel series of dipicolylamine-containing carbazole amphiphiles with strong Zn2+ chelating ability were synthesized, biomimicking cationic antimicrobial peptides. Effective broad-spectrum 16 combined with 12.5 μg/mL Zn2+ was identified as the most promising antimicrobial candidate. 16 combined with 12.5 μg/mL Zn2+ exhibited excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria (MICs = 0.78-3.125 μg/mL), weak hemolytic activity, and low cytotoxicity. Time-kill kinetics and mechanism studies revealed 16 combined with 12.5 μg/mL Zn2+ had rapid bacterial killing properties, as evidenced by disruption of the integrity of bacterial cell membranes, effectively preventing bacterial resistance development. Importantly, 16 combined with 12.5 μg/mL Zn2+ showed excellent in vivo efficacy in a murine keratitis model caused by Staphylococcus aureus ATCC29213 or Pseudomonas aeruginosa ATCC9027. Therefore, 16 combined with 12.5 μg/mL Zn2+ could be a promising candidate for treating bacterial infections.
CiteXplore: 34235929