Synthesis of bis-furyl-pyrrolo[3,4-<i>b</i>]pyridin-5-ones <i>via</i> Ugi-Zhu reaction and <i>in vitro</i> activity assays against human SARS-CoV-2 an...
Basic Information
ID: ALA5230165
Journal: RSC Med Chem
Title: Synthesis of bis-furyl-pyrrolo[3,4-b]pyridin-5-ones via Ugi-Zhu reaction and in vitro activity assays against human SARS-CoV-2 and in silico studies on its main proteins.
Authors: Morales-Salazar I, Montes-Enríquez FP, Garduño-Albino CE, García-Sánchez MA, Ibarra IA, Rojas-Aguirre Y, García-Hernández ME, Sarmiento-Silva RE, Alcaraz-Estrada SL, Díaz-Cervantes E, González-Zamora E, Islas-Jácome A.
Abstract: An Ugi-Zhu three-component reaction (UZ-3CR) coupled in one pot manner to a cascade process (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration) was performed to synthesize a series of bis-furyl-pyrrolo[3,4-b]pyridin-5-ones in 45 to 82% overall yields using ytterbium triflate as a catalyst, toluene as a solvent, and microwaves as a heat source. The synthesized molecules were evaluated in vitro against human SARS-CoV-2 through a time-of-addition approach, finding that compound 1e, at a concentration of 10.0 μM, exhibited a significant reduction at the initial infection stages, thus showing prophylactic potential. On the other hand, it was found that compound 1d, at the same concentration, was significantly active when applied post-infection, thus exhibiting a therapeutic profile. Moreover, compound 1f showed both, prophylactic and therapeutic activity. Then, to understand interactions between synthesized compounds and the main proteins related to the virus, docking studies were performed on spike-glycoprotein, main-protease, and Nsp3 protein, finding moderate to strong binding energies, matching accurately with the in vitro results. Additionally, a pharmacophore model was computed behind further rational drug design.
CiteXplore: 36760742
DOI: 10.1039/d2md00350c
Patent ID: ┄